首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11095篇
  免费   962篇
  国内免费   1514篇
  2023年   138篇
  2022年   166篇
  2021年   276篇
  2020年   283篇
  2019年   410篇
  2018年   408篇
  2017年   366篇
  2016年   346篇
  2015年   330篇
  2014年   600篇
  2013年   720篇
  2012年   499篇
  2011年   676篇
  2010年   508篇
  2009年   593篇
  2008年   592篇
  2007年   712篇
  2006年   592篇
  2005年   503篇
  2004年   376篇
  2003年   395篇
  2002年   352篇
  2001年   245篇
  2000年   241篇
  1999年   247篇
  1998年   202篇
  1997年   228篇
  1996年   172篇
  1995年   144篇
  1994年   147篇
  1993年   180篇
  1992年   145篇
  1991年   103篇
  1990年   98篇
  1989年   97篇
  1988年   96篇
  1987年   72篇
  1986年   91篇
  1985年   142篇
  1984年   200篇
  1983年   131篇
  1982年   148篇
  1981年   106篇
  1980年   115篇
  1979年   103篇
  1978年   59篇
  1977年   51篇
  1976年   44篇
  1975年   44篇
  1974年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
Summary Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 M NO 3 - in flowing nutrient solution. No differences between the two species were observed at either NO 3 - level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3 - absorption rate, nitrogen concentration, and other characteristics of NO 3 - uptake and photosynthesis. The effects of decreasing NO 3 - concentration in the solution were mainly to decrease the NO 3 - concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-M treatment compared to the 100-M treatment. This is in contrast with other species, where growth is reduced at much higher NO 3 - concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3 - concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.  相似文献   
43.
Summary Characteristics of inorganic carbon assimilation by photosynthesis in seawater were investigated in six species of the Fucales (five Fucaceae, one Cystoseiraceae) and four species of the Laminariales (three Laminariaceae, one Alariaceae) from Arbroath, Scotland. All of the algae tested could photosynthesise faster at high external pH values than the uncatalysed conversion of HCO 3 - to CO2 can occur, i.e. can use external HCO 3 - . They all had detectable extracellular carbonic anhydrase activity, suggesting that HCO 3 - use could involve catalysis of external CO2 production, a view supported to some extent by experiments with an inhibitor of carbonic anhydrase. All of the algae tested had CO2 compensation concentrations at pH 8 which were lower than would be expected from diffusive entry of CO2 supplying RUBISCO as the initial carboxylase, consistent with the operation of energized entry of HCO 3 - and / or CO2 acting as a CO2 concentrating mechanism. Quantitative differences among the algae examined were noted with respect to characteristics of inorganic C assimilation. The most obvious distinction was between the eulittoral Fucaceae, which are emersed for part of, or most of, the tidal cycle, and the other three families (Cystoseiraceae, Laminariaceae, Alariaceae) whose representatives are essentially continually submersed. The Fucaceae examined are able to photosynthesise at high pH values, and have lower CO2 compensation concentrations, and lower K1/2 values for inorganic C use in photosynthesis, at pH 8, than the other algae tested. Furthermore, the Fucaceae are essentially saturated with inorganic C for photosynthesis at the normal seawater concentration at pH 8 and 10°C. These characteristics are consistent with the dominant role of a CO2 concentrating mechanism in CO2 acquisition by these plants. Other species tested have characteristcs which suggest a less effective HCO 3 - use and CO2 concentrating mechanism, with the Laminariaceae being the least effective; unlike the Fucaceae, photosynthesis by these algae is not saturated with inorganic C in normal seawater. Taxonomic and ecological implications of these results are considered in relation to related data in the literature.  相似文献   
44.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
45.
Lea Madi  Y. Henis 《Plant and Soil》1989,115(1):89-98
Aggregation of the root-inhabiting, asymbiotic N-fixingAzospirillum brasilense Cd (ATCC-29729), was studied. Aggregation occurred towards the end of the exponential phase and during the stationary phase. More aggregates were formed in media supplemented with organic acids than in those containing sugars as a sole carbon source. Maximum growth with no aggregation was obtained in a medium containing both fructose and malate as carbon sources. Aggregation was increased by poly-L-lysine and carbodiimide as well as by increasing the C/N ratio and decreasing combined nitrogen in the growth medium. Aggregates were stable at pH levels of >8 and <6, but dispersed at pH 7.1. Treatment of Azospirillum with NaEDTA resulted in loss of both aggregative capacity and the ability of adsorb to wheat roots without losing cell viability. When extracted bacteria were suspended in their dialysed NaEDTA extract, both their aggregative and adsorptive capacities were restored.The dialysed NaEDTA extract agglutinated bacterial cells and red blood cells, especially of type O. When the extract was run through a sepharose gel, it separated into three main fractions, of which only one showed agglutinating capacity. Gel electrophoresis of this fraction revealed a single band (MW 97,000) which reacted positively to Schiff's reagent and Coomassie brilliant blue R-250, typical to a glycoprotein. Bacterial agglutination by this fraction was strongly inhibited by D-glucose, melibiose and -metyl glucoside. No evidence as to the involvement of cellulose fibrils in aggregation was found. It is suggested that glycoprotein(s) and glucose residues located on the outer surface of the cells are involved in aggregation of Azospirillum.  相似文献   
46.
Minesoils developed from lignite surface mining in Texas are nutrient-poor and have a high N retention capacity. A major concern of landowners and soil conservationists is the response of Coastal bermudagrass to the application of low rates of ammonium-N fertilizer on these nutrient-poor minesoils. A glasshouse study, using15N-labelled ammonium sulfate fertilizer and lignite minesoil, was conducted to measure Coastal bermudagrass biomass production and fertilizer recovery during establishment in response to clipping at 2, 4, and 8 week intervals. At N rates of 0, 40, and 80 kg N ha–1,increases in N fertilization increased Coastal bermudagrass aboveground biomass 5-fold, but showed only small increases in belowground biomass. Recovery of ammonium-N fertilizer ranged from 54 to 63%. Roots contained approximately the same N content across all fertilizer rates suggesting that young, estabilishing, Coatal bermudagrass roots reserve N until their N requirement is met. As more N is obtained above that which was needed to maintain roots, then additional N taken up by the plant was transported to aboveground plant parts for growth. Frequent clipping intensified N transport to aboveground tissues. Reduced amounts of N were contained in roots after clipping due to reductions in root growth, biomass, and resource demand. Fertilization of Coastal bermudagrass at low N rates with different N fertilizer forms influenced the distribution of N in the plant and affected N recovery by different parts of the plant.  相似文献   
47.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   
48.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
49.
Abstract. The present study investigates the relationships between nitrogen uptake, transpiration, and carbon assimilation. Plants growing on nutrient solution were enclosed for 10–16 d in a growth chamber, where temperature, photon flux density, vapour saturation deficit and CO2 concentration were controlled. One of these factors was modified every 4 to 5 d. Shoot photosynthesis and root and shoot respiration were recorded every half-hour. Nitrogen uptake from the root medium and plant transpiration were measured daily. In most cases, an increase in photon flux density led to increases in transpiration, net daily carbon assimilation, and nitrogen uptake. By modifying transpiration rate without changing photosynthesis (varying vapour saturation deficit), or by modifying transpiration and carbon assimilation in opposite ways (varying CO2 air concentration), it was shown that nitrogen uptake does not follow transpiration, but is linked to the carbon uptake of the plant. When light was increased from low to intermediate levels, the N uptake/C assimilation ratio remained constant. At higher photon flux density, this ratio declined markedly. It is proposed that in the first case, growth is limited by carbohydrate availability, thus any increase in carbon assimilation leads to a proportional increase in nitrogen uptake, in contrast to the second situation where carbohydrates may accumulate in the plant without further nitrogen requirement.  相似文献   
50.
Effects of tin and lead on organ levels of essential minerals in rabbits   总被引:1,自引:0,他引:1  
The effect of tin and lead on levels of essential metals (Zn, Cu, Ca, Fe) in rabbit tissues was compared in relation to the route of administration. Animals received intraperitoneally, or per os, SnCl2 (2 mg Sn/kg) or Pb(CH3COO)2 (3.5 mg Pb/kg) every day for 5 d or for 1 mo. Copper, zinc, iron, and calcium were determined by AAS in the liver, kidneys, spleen, brain, bone marrow, and blood; lead and tin concentration were measured in the blood of animals. Tin and lead administered per os caused either no changes or the decreased concentration of endogenous metals in several tissues. The other route of administration (ip) of both metals generally contributed to the increased storage of essential elements. Blood tin levels of tin treated animals were only about less than or equal to 1/10 of blood lead concentrations of rabbits exposed to lead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号